Current Issue : January - March Volume : 2012 Issue Number : 1 Articles : 5 Articles
Using an Unscented Kalman Filter (UKF) as the nonlinear estimator within a Global Positioning System/Inertial Navigation System (GPS/INS) sensor fusion algorithm for attitude estimation, various methods of calculating the matrix square root were discussed and compared. Specifically, the diagonalization method, Schur method, Cholesky method, and five different iterative methods were compared. Additionally, a different method of handling the matrix square root requirement, the square-root UKF (SR-UKF), was evaluated. The different matrix square root calculations were compared based on computational requirements and the sensor fusion attitude estimation performance, which was evaluated using flight data from an Unmanned Aerial Vehicle (UAV). The roll and pitch angle estimates were compared with independently measured values from a high quality mechanical vertical gyroscope. This manuscript represents the first comprehensive analysis of the matrix square root calculations in the context of UKF. From this analysis, it was determined that the best overall matrix square root calculation for UKF applications in terms of performance and execution time is the Cholesky method....
A new framework is presented for multiparticipant coordination of over-the-horizon maneuvering processes. In this framework, geographical information is decentralizedly augmented via the multitude of annotation processes: landmark localization by map builder, connection generation by planner, and GPS tracking by probe vehicles. By integrating the augmentation process on a common satellite image, the subscriber participants reuse the geographics within specific maneuvering context. Based on graph theoretic representation of the multiparticipant augment process, an interactive geographics annotation system was developed and verified within the context of interactive rendezvous and cooperative monitoring....
The field of satellite navigation has witnessed the advent of a number of new systems and technologies: after the landmark design and development of the Global Positioning System (GPS), a number of new independent Global Navigation Satellite Systems (GNSSs) were or are being developed all over the world: Russia's GLONASS, Europe's GALILEO, and China's BEIDOU-2, to mention a few. In this ever-changing context, the availability of reliable and flexible receivers is becoming a priority for a host of applications, including research, commercial, civil, and military. Flexible means here both easily upgradeable for future needs and/or on-the-fly reprogrammable to adapt to different signal formats. An effective approach to meet these design goals is the software-defined radio (SDR) paradigm. In the last few years, the availability of new processors with high computational power enabled the development of (fully) software receivers whose performance is comparable to or better than that of conventional hardware devices, while providing all the advantages of a flexible and fully configurable architecture. The aim of this tutorial paper is surveying the issue of the general architecture and design rules of a GNSS software receiver, through a comprehensive discussion of some techniques and algorithms, typically applied in simple PC-based receiver implementations....
This paper studies the implementation of a novel wireless local positioning system (WLPS) for spacecraft formation flying to maintain high-performance spacecraft relative and absolute position estimation. A WLPS equipped with antenna arrays allows each spacecraft to measure the relative range and coordinate angle(s) of other spacecraft located in its coverage area. The dynamic base station and the transponder of WLPS enable spacecraft to localize each other in the formation. Because the signal travels roundtrip in WLPS, and due to the high spacecraft velocities, the signal transmission time delay reduces the localization performance. This work studies spacecraft formation positions estimation performance assuming that only WLPS is available onboard. The feasibility of estimating the spacecraft absolute position using only one-dimensional antenna array is also investigated. The effect of including GPS measurements in addition to WLPS is studied and compared to a GPS standalone system....
Automatic dependent surveillance-broadcast (ADS-B) is a system in which aircraft continually transmit their identity and GPS-derived navigational information. ADS-B networks for air traffic monitoring have already been implemented in areas around the world, but ground stations cannot be installed in midocean and are difficult to maintain in the Arctic, leaving a coverage gap for oceanic and high latitude airspace. A potential solution for worldwide tracking of aircraft is through the monitoring of aircraft-transmitted ADS-B signals using satellite-borne receivers. To investigate this possibility, a high altitude balloon experiment was carried out in June 2009 to determine if ADS-B signals can be detected from near space. The Flying Laboratory for the Observation of ADS-B Transmissions (FLOAT) was the first stratospheric platform to collect ADS-B data. The FLOAT mission successfully demonstrated the reception of ADS-B signals from near space, paving the way to the development of a space-based ADS-B system....
Loading....